POLI210: Political Science Research Methods

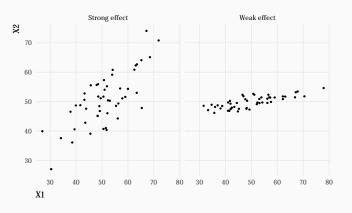
Lecture 12.2: Linear regression

Olivier Bergeron-Boutin November 23rd, 2021

Boring admin stuff

- · More appointments with me available
- Lots of tutoring sessions
- · I know there's a lot going on
 - $\cdot\,$ I'm offering as much help as I can use it!

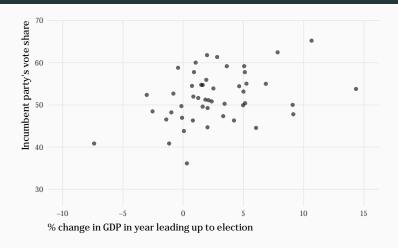
Cats



The limitations of correlation coefficients

Two limitations:

- · Does not give an estimate of the **magnitude** of the effect
 - \cdot If X increases by one unit, by how much can I expect Y to change?
- · Does not allow us to "control" for other variables
 - By "controlling" for confounders, we will be able to make more plausible claims about causality


Correlation does not indicate magnitude of the effect

[1] 0.7425742

[1] 0.7616742

What we want to do

Our objective: draw a line through the points that best represents the relationship

Back to middleschool

We can represent lines in a graph using the following equation:

$$f(x) = ax + b$$

- f(x): the value of y; it's determined by the right-hand side of the equation
- $\cdot \ ax$: some constant multiplied by x
 - $\cdot \ a$ is the slope of my line
- \cdot b: the intercept

If I'm given the values a, x, and b, I can find the value of y

7

A linear function

Let's consider a simple function f(x) = 2x + 4

b = 0, because y is equal to 0 when x is equal to 0

a = 2, because for each increase of 1 unit in x, y increases by 2 units

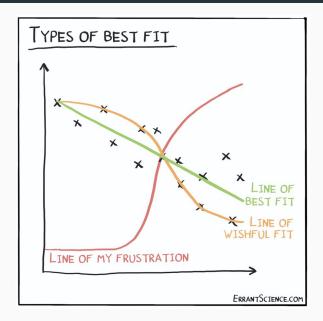
Regression notation

What we'll be doing: fit a line through the points

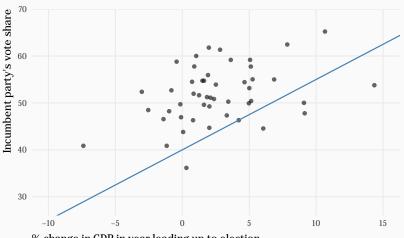
- · We will want to find a rule that allows us to choose the best line
- · This is the "line of best fit"

The line of best fit is generally expressed in the following way:

$$Y_i = \beta_0 + \beta_1 X_1 + \epsilon_i$$

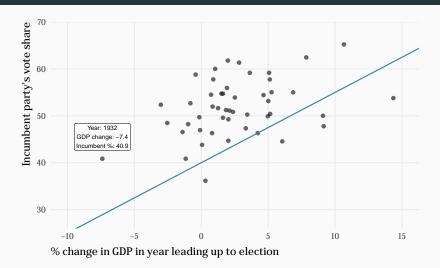


Dr. Jacqueline Goldman @jagoldma ⋅ 12h Backstreet boys Linear Regression

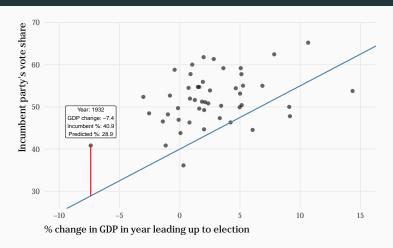

Tell me Y

Line of best fit or...?

Our first attempt


 $\mathrm{VoteShare}_i = \beta_0 + \beta_1 \mathrm{Growth}_i + \epsilon_i$

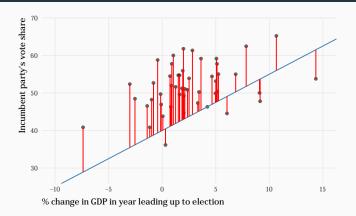
% change in GDP in year leading up to election


Here, I arbitrarily chose a line: f(x) = 1.5 * GDP + 40

Our first attempt

Let's focus on a single point: the 1932 election

Our first attempt: residual for the 1932 observation



Residual: the difference between the actual outcome and our model's prediction of the outcome

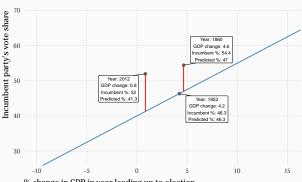
$$\cdot \epsilon_i = y_i - \hat{y_i} = 40.9 - 28.9 = 12.0$$

Our first attempt: all residuals

errors

- · We can compute the residual for each observation
- · Why not try to minimize the sum of residuals?
- · Some are positive, some are negative; they will cancel out
- Instead, we want to choose a line that minimizes the sum of squared

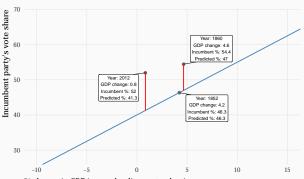
Sum of squared errors


Sum of squared errors (SSE):

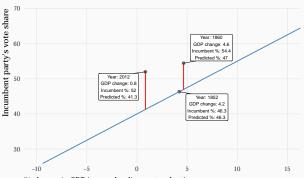
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• With
$$n=3$$
:

$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2$$

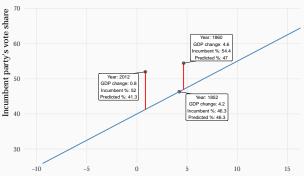

Let's select just 3 observations to simplify the task

% change in GDP in year leading up to election


$$y_i$$
: 52.0, 46.3, 54.4

Let's select just 3 observations to simplify the task

- % change in GDP in year leading up to election
- y_i : 52.0, 46.3, 54.4
- \hat{y}_i : 41.3, 46.3, 47.0


Let's select just 3 observations to simplify the task

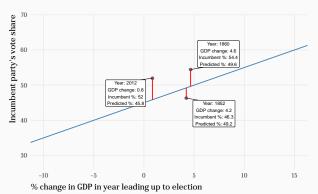
% change in GDP in year leading up to election

- y_i : 52.0, 46.3, 54.4
- \hat{y}_i : 41.3, 46.3, 47.0
- $\cdot \epsilon_i$: 10.7, 00.0, 07.4


Let's select just 3 observations to simplify the task

% change in GDP in year leading up to election

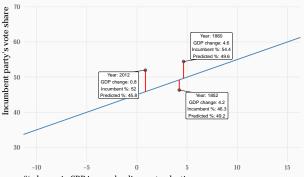
•	y_i :	52.0, 46.3, 54.4
•	\hat{y}_i :	41.3, 46.3, 47.0
•	ϵ_i :	10.7,00.0,07.4
	SSE:	$10.7^2 + 0^2 + 7.4^2 = 169.5$


Let's instead use $\beta_0=45$ and $\beta_1=1$

% change in GDP in year leading up to election

$$y_i$$
: 52.0, 46.3, 54.4

Let's instead use $\beta_0=45$ and $\beta_1=1$


 $\cdot y_i$:

52.0, 46.3, 54.4

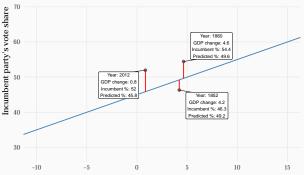
· \hat{y}_i :

45.8, 49.2, 49.6

Let's instead use $\beta_0=45$ and $\beta_1=1$

- % change in GDP in year leading up to election
- $\cdot y_i$:

52.0, 46.3, 54.4


 $\cdot \hat{y}_i$:

45.8, 49.2, 49.6

 \cdot ϵ_i :

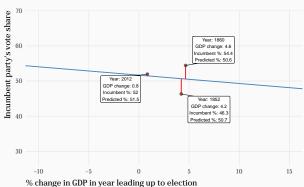
6.2, -2.9, 4.8

Let's instead use $\beta_0=45$ and $\beta_1=1$

% change in GDP in year leading up to election

	y_i :	52.0, 46.3, 54.4
•	\hat{y}_i :	45.8, 49.2, 49.6
•	ϵ_i :	6.2, -2.9, 4.8
	SSE:	$6.2^2 + -2.9^2 + 4.8^2 = 69.89$

Running our regression

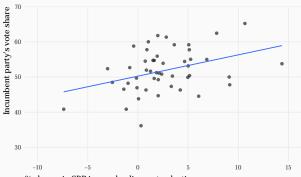

Of course, we don't have to do this by hand

- The command to run a linear regression in R is lm()
- · Two main arguments:
 - formula, of format $v \sim x$
 - data

```
lm(partyincshr ~ gdpchangeyr3,
   data = subset(economy, year %in% c(1852, 1860, 2012)))
```

```
##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3, data = subset(economy,
## year %in% c(1852, 1860, 2012)))
##
## Coefficients:
## (Intercept) gdpchangeyr3
## 51.6700 -0.2373
```

Visualizing the correct regression line



i	y_i	\hat{y}_i	ϵ_i	ϵ_i^2
1	46.32	50.67	-4.35	18.92
2	54.42	50.57	3.85	14.82
3	51.96	51.47	0.49	0.24

Sum of Squared Errors:

$$18.92 + 14.82 + 0.24 = 33.98$$

Back to our full data

% change in GDP in year leading up to election

Linear regression with our full data

```
lm(formula = partyincshr ~ gdpchangeyr3,
    data = economy)

##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3, data = economy)
##
## Coefficients:
## (Intercept) gdpchangeyr3
## 50.2541 0.6051
```

This is okay...but there's not a lot of information!

Linear regression with our full data

```
lm(formula = partyincshr ~ gdpchangeyr3, data = economy) %>% summary()
##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3, data = economy)
##
## Residuals:
##
      Min 1Q Median 3Q
                                         Max
## -14.2925 -3.6163 -0.1858 3.8433 10.3324
##
## Coefficients:
##
       Estimate Std. Error t value Pr(>|t|)
## (Intercept) 50.2541 0.9992 50.293 < 2e-16 ***
## gdpchangeyr3 0.6051 0.2196 2.755 0.00837 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.653 on 46 degrees of freedom
    (183 observations deleted due to missingness)
##
## Multiple R-squared: 0.1417, Adjusted R-squared: 0.123
```

F-statistic: 7.592 on 1 and 46 DF, p-value: 0.008372

```
##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3, data = economy)
##
## Residuals:
##
       Min 10 Median 30
                                         Max
## -14.2925 -3.6163 -0.1858 3.8433 10.3324
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 50.2541 0.9992 50.293 < 2e-16 ***
## gdpchangeyr3 0.6051 0.2196 2.755 0.00837 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.653 on 46 degrees of freedom
##
    (183 observations deleted due to missingness)
## Multiple R-squared: 0.1417, Adjusted R-squared: 0.123
## F-statistic: 7.592 on 1 and 46 DF, p-value: 0.008372
```

```
##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3, data = economy)
##
## Residuals:
##
       Min
               10 Median
                                  30
                                          Max
## -14.2925 -3.6163 -0.1858 3.8433 10.3324
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 50.2541 0.9992 50.293 < 2e-16 ***
## gdpchangeyr3 0.6051 0.2196 2.755 0.00837 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.653 on 46 degrees of freedom
##
    (183 observations deleted due to missingness)
## Multiple R-squared: 0.1417, Adjusted R-squared: 0.123
## F-statistic: 7.592 on 1 and 46 DF, p-value: 0.008372
```

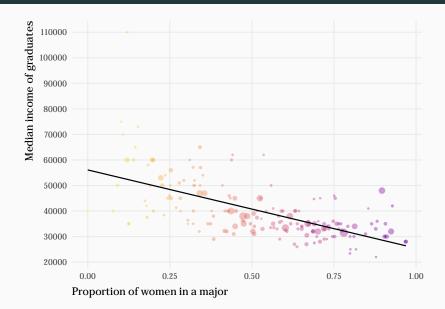
```
##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3, data = economy)
##
## Residuals:
##
       Min 10 Median 30
                                         Max
## -14.2925 -3.6163 -0.1858 3.8433 10.3324
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 50.2541 0.9992 50.293 < 2e-16 ***
## gdpchangeyr3 0.6051 0.2196 2.755 0.00837 **
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
##
## Residual standard error: 5.653 on 46 degrees of freedom
##
    (183 observations deleted due to missingness)
## Multiple R-squared: 0.1417, Adjusted R-squared: 0.123
## F-statistic: 7.592 on 1 and 46 DF, p-value: 0.008372
```

```
##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3, data = economy)
##
## Residuals:
##
       Min
           10 Median 30
                                         Max
## -14.2925 -3.6163 -0.1858 3.8433 10.3324
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                50.2541
## (Intercept)
                         0.9992 50.293 < 2e-16 ***
                        0.2196 2.755 0.00837 **
## gdpchangeyr3
                0.6051
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1
##
  Residual standard error: 5.653 on 46 degrees of freedom
##
    (183 observations deleted due to missingness)
## Multiple R-squared: 0.1417, Adjusted R-squared: 0.123
## F-statistic: 7.592 on 1 and 46 DF. p-value: 0.008372
```

```
##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3, data = economy)
##
## Residuals:
##
       Min 10 Median 30
                                         Max
## -14.2925 -3.6163 -0.1858 3.8433 10.3324
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 50.2541
                           0.9992
                                  50.293 < 2e-16 ***
## gdpchangeyr3 0.6051
                           0.2196
                                   2.755 0.00837 **
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
##
## Residual standard error: 5.653 on 46 degrees of freedom
##
    (183 observations deleted due to missingness)
## Multiple R-squared: 0.1417, Adjusted R-squared: 0.123
## F-statistic: 7.592 on 1 and 46 DF, p-value: 0.008372
```

```
##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3, data = economy)
##
## Residuals:
##
       Min 10 Median 30
                                         Max
## -14.2925 -3.6163 -0.1858 3.8433 10.3324
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 50.2541 0.9992
                                  50.293 < 2e-16 ***
## gdpchangeyr3 0.6051 0.2196
                                  2.755 0.00837 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
##
## Residual standard error: 5.653 on 46 degrees of freedom
##
    (183 observations deleted due to missingness)
## Multiple R-squared: 0.1417, Adjusted R-squared: 0.123
## F-statistic: 7.592 on 1 and 46 DF, p-value: 0.008372
```

```
##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3, data = economy)
##
## Residuals:
##
       Min 10 Median 30
                                         Max
## -14.2925 -3.6163 -0.1858 3.8433 10.3324
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 50.2541 0.9992 50.293
                                          < 2e-16 ***
## gdpchangeyr3 0.6051 0.2196 2.755 0.00837 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
##
## Residual standard error: 5.653 on 46 degrees of freedom
##
    (183 observations deleted due to missingness)
## Multiple R-squared: 0.1417, Adjusted R-squared: 0.123
## F-statistic: 7.592 on 1 and 46 DF, p-value: 0.008372
```


```
##
## Call:
## lm(formula = partyincshr ~ gdpchangeyr3, data = economy)
##
## Residuals:
##
       Min 10 Median 30
                                         Max
## -14.2925 -3.6163 -0.1858 3.8433 10.3324
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 50.2541 0.9992 50.293 < 2e-16 ***
## gdpchangeyr3 0.6051 0.2196 2.755 0.00837 **
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
##
## Residual standard error: 5.653 on 46 degrees of freedom
##
    (183 observations deleted due to missingness)
## Multiple R-squared: 0.1417, Adjusted R-squared: 0.123
## F-statistic: 7.592 on 1 and 46 DF, p-value: 0.008372
```

How results generally appear in published work

	Model 1	
(Intercept)	50.254***	
	(0.999)	
GDP change (year 3)	0.605**	
	(0.220)	
Num.Obs.	48	
R2	0.142	
R2 Adj.	0.123	
	4 0 0 4 district	

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Predicting income

A linear regression model predicting income

	Model 1
(Intercept)	56093.305***
	(1705.115)
Proportion of women	-30669.943***
	(2987.010)
Num.Obs.	172
R2	0.383
R2 Adj.	0.379

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Why more covariates?